Papers of the Month – 2024

August, 2024

Lancet HIV. 2024 May 31:S2352-3018(24)00152-8. doi: 10.1016/S2352-3018(24)00152-8. PMID: 38692824; PMCID: PMC11228966.

AUTHORS
Ian Frank 1Shuying S Li 2Nicole Grunenberg 2Edgar T Overton 3Samuel T Robinson 2Hua Zheng 4Kelly E Seaton 5Jack R Heptinstall 5Mary A Allen 6Kenneth H Mayer 7Daniel A Culver 8Michael C Keefer 9Sri Edupuganti 10Michael N Pensiero 6Vijay L Mehra 6Stephen C De Rosa 2Daryl E Morris 2Shixia Wang 11Michael S Seaman 12David C Montefiori 13Guido Ferrari 14Georgia D Tomaras 5James G Kublin 2Lawrence Corey 2Shan Lu 15HVTN 124 Study Team

ABSTRACT

Background: An effective HIV vaccine will most likely need to have potent immunogenicity and broad cross-subtype coverage. The aim of the HIV Vaccine Trials Network (HVTN) 124 was to evaluate safety and immunogenicity of a unique polyvalent DNA-protein HIV vaccine with matching envelope (Env) immunogens.

Methods: HVTN 124 was a randomised, phase 1, placebo-controlled, double-blind study, including participants who were HIV seronegative and aged 18-50 years at low risk for infection. The DNA vaccine comprised five plasmids: four copies expressing Env gp120 (clades A, B, C, and AE) and one gag p55 (clade C). The protein vaccine included four DNA vaccine-matched GLA-SE-adjuvanted recombinant gp120 proteins. Participants were enrolled across six clinical sites in the USA and were randomly assigned to placebo or one of two vaccine groups (ie, prime-boost or coadministration) in a 5:1 ratio in part A and a 7:1 ratio in part B. Vaccines were delivered via intramuscular needle injection. The primary outcomes were safety and tolerability, assessed via frequency, severity, and attributability of local and systemic reactogenicity and adverse events, laboratory safety measures, and early discontinuations. Part A evaluated safety. Part B evaluated safety and immunogenicity of two regimens: DNA prime (administered at months 0, 1, and 3) with protein boost (months 6 and 8), and DNA-protein coadministration (months 0, 1, 3, 6, and 8). All randomly assigned participants who received at least one dose were included in the safety analysis. The study is registered with ClinicalTrials.gov (NCT03409276) and is closed to new participants.

Findings: Between April 19, 2018 and Feb 13, 2019, 60 participants (12 in part A [five men and seven women] and 48 in part B [21 men and 27 women]) were enrolled. All 60 participants received at least one dose, and 14 did not complete follow-up (six of 21 in the prime-boost group and eight of 21 in the coadminstration group). 11 clinical adverse events deemed by investigators as study-related occurred in seven of 48 participants in part B (eight of 21 in the prime-boost group and three of 21 in the coadministration group). Local reactogenicity in the vaccine groups was common, but the frequency and severity of reactogenicity signs or symptoms did not differ between the prime-boost and coadministration groups (eg, 20 [95%] of 21 in the prime-boost group vs 21 [100%] of 21 in the coadministration group had either local pain or tenderness of any severity [p=1·00], and seven [33%] vs nine [43%] had either erythema or induration [p=0·97]), nor did laboratory safety measures. There were no delayed-type hypersensitivity reactions or vasculitis or any severe clinical adverse events related to vaccination. The most frequently reported systemic reactogenicity symptoms in the active vaccine groups were malaise or fatigue (five [50%] of ten in part A and 17 [81%] of 21 in the prime-boost group vs 15 [71%] of 21 in the coadministration group in part B), headache (five [50%] and 18 [86%] vs 12 [57%]), and myalgia (four [40%] and 13 [62%] vs ten [48%]), mostly of mild or moderate severity.

Interpretation: Both vaccine regimens were safe, warranting evaluation in larger trials.

July, 2024

Vaccine. 2024 Jul 11;42(18):3756-3767. doi: 10.1016/j.vaccine.2024.04.088. Epub 2024 May 9. PMID: 38724417.

AUTHORS
Deok-Hwan KimSeung-Hun LeeJiwon KimJiho Lee Jei-Hyun JeongJi-Yun KimSeung-Un SongHyukchae LeeAndrew Y ChoJi-Yeon HyeonSungsu YoukChang-Seon Song 

ABSTRACT
A Newcastle disease virus (NDV)-vectored vaccine expressing clade 2.3.4.4b H5 Hemagglutinin was developed and assessed for efficacy against H5N1 highly pathogenic avian influenza (HPAI) in specific pathogen-free (SPF) chickens, broilers, and domestic ducks. In SPF chickens, the live recombinant NDV-vectored vaccine, rK148/22-H5, achieved complete survival against HPAI and NDV challenges and significantly reduced viral shedding. Notably, the live rK148/22-H5 vaccine conferred good clinical protection in broilers despite the presence of maternally derived antibodies. Good clinical protection was observed in domestic ducks, with decreased viral shedding. It demonstrated complete survival and reduced cloacal viral shedding when used as an inactivated vaccine from SPF chickens. The rK148/22-H5 vaccine is potentially a viable and supportive option for biosecurity measure, effectively protecting in chickens against the deadly clade 2.3.4.4b H5 HPAI and NDV infections. Furthermore, it aligns with the strategy of Differentiating Infected from Vaccinated Animals (DIVA).

June, 2024

npj Vaccines 9, 106 (2024). https://doi.org/10.1038/s41541-024-00885-1

AUTHORS
Carlos A. Fierro, Michal Sarnecki, Bart Spiessens, Oscar Go, Tracey A. Day, Todd A. Davies, Germie van den Dobbelsteen, Jan Poolman, Darren Abbanat & Wouter Haazen

ABSTRACT
The safety, reactogenicity, and immunogenicity of 3 doses of ExPEC10V (VAC52416), a vaccine candidate to prevent invasive Escherichia coli disease, were assessed in a phase 1/2a study (NCT03819049). In Cohort 1, ExPEC10V was well tolerated; the high dose was selected as optimal and further characterized in Cohort 2. Cohort 2 comprised a maximum 28-day screening, vaccination (Day 1), double-blind 181-day follow-up, and open-label long-term follow-up until Year 1. Healthy participants (≥60 years) with a history of urinary tract infection (UTI) within 5 years were randomized to receive ExPEC10V or placebo. The primary endpoint evaluated the safety and reactogenicity of ExPEC10V (solicited local and systemic AEs [until Day 15]; unsolicited AEs [until Day 30], SAEs [until Day 181], and immunogenicity [Day 30]) via multiplex electrochemiluminescent (ECL) and multiplex opsonophagocytic assay (MOPA). 416 participants (ExPEC10V, n = 278; placebo, n = 138) were included (mean age [SD], 68.8 [6.52] years; female, 79.6%; White, 96.1%). The incidence of solicited AEs was higher with ExPEC10V (local, 50.0% [n = 139]; systemic, 50.0% [n = 139]) than placebo (15.9% [n = 22]; 38.4% [n = 53]); rates of unsolicited AEs were comparable (ExPEC10V, 28.4% [n = 79]; placebo, 26.1% [n = 36]). No vaccine-related SAEs or deaths were reported. ExPEC10V elicited a robust antibody-mediated immunogenic response across all serotypes with ECL (Day 30 geometric mean fold increase, 2.33–8.18) and demonstrated functional opsonophagocytic killing activity across all measured serotypes (Day 30 geometric mean fold increase, 1.81–9.68). ExPEC10V exhibited an acceptable safety profile and a robust vaccine-induced functional immunogenic response in participants with a history of UTI.

May, 2024

Nat. Biomed. Eng (2024). https://doi.org/10.1038/s41551-024-01209-3

AUTHORS
Alexander J. Najibi, Ryan S. Lane, Miguel C. Sobral, Giovanni Bovone, Shawn Kang, Benjamin R. Freedman, Joel Gutierrez Estupinan, Alberto Elosegui-Artola, Christina M. Tringides, Maxence O. Dellacherie, Katherine Williams, Hamza Ijaz, Sören Müller, Shannon J. Turley & David J. Mooney

ABSTRACT
Following immunization, lymph nodes dynamically expand and contract. The mechanical and cellular changes enabling the early-stage expansion of lymph nodes have been characterized, yet the durability of such responses and their implications for adaptive immunity and vaccine efficacy are unknown. Here, by leveraging high-frequency ultrasound imaging of the lymph nodes of mice, we report more potent and persistent lymph-node expansion for animals immunized with a mesoporous silica vaccine incorporating a model antigen than for animals given bolus immunization or standard vaccine formulations such as alum, and that durable and robust lymph-node expansion was associated with vaccine efficacy and adaptive immunity for 100 days post-vaccination in a mouse model of melanoma. Immunization altered the mechanical and extracellular-matrix properties of the lymph nodes, drove antigen-dependent proliferation of immune and stromal cells, and altered the transcriptional features of dendritic cells and inflammatory monocytes. Strategies that robustly maintain lymph-node expansion may result in enhanced vaccination outcomes.

April, 2024

NPJ Vaccines. 2024 Apr 6;9(1):74. doi: 10.1038/s41541-024-00862-8. PMID: 38582771; PMCID: PMC10998906.

AUTHORS
Del Moral-Sánchez I, Wee EG, Xian Y, Lee WH, Allen JD, Torrents de la Peña A, Fróes Rocha R, Ferguson J, León AN, Koekkoek S, Schermer EE, Burger JA, Kumar S, Zwolsman R, Brinkkemper M, Aartse A, Eggink D, Han J, Yuan M, Crispin M, Ozorowski G, Ward AB, Wilson IA, Hanke T, Sliepen K, Sanders RW.

ABSTRACT
Recombinant native-like HIV-1 envelope glycoprotein (Env) trimers are used in candidate vaccines aimed at inducing broadly neutralizing antibodies. While state-of-the-art SOSIP or single-chain Env designs can be expressed as native-like trimers, undesired monomers, dimers and malformed trimers that elicit non-neutralizing antibodies are also formed, implying that these designs could benefit from further modifications for gene-based vaccination approaches. Here, we describe the triple tandem trimer (TTT) design, in which three Env protomers are genetically linked in a single open reading frame and express as native-like trimers. Viral vectored Env TTT induced similar neutralization titers but with a higher proportion of trimer-specific responses. The TTT design was also applied to generate influenza hemagglutinin (HA) trimers without the need for trimerization domains. Additionally, we used TTT to generate well-folded chimeric Env and HA trimers that harbor protomers from three different strains. In summary, the TTT design is a useful platform for the design of HIV-1 Env and influenza HA immunogens for a multitude of vaccination strategies.

March, 2024

Nat Immunol. 2024 Mar;25(3):418-431. doi: 10.1038/s41590-023-01739-z. Epub 2024 Jan 15. Erratum in: Nat Immunol. 2024 Feb 1;: PMID: 38225437.

AUTHORS
Tran KA, Pernet E, Sadeghi M, Downey J, Chronopoulos J, Lapshina E, Tsai O, Kaufmann E, Ding J, Divangahi M.

ABSTRACT
After a century of using the Bacillus Calmette-Guérin (BCG) vaccine, our understanding of its ability to provide protection against homologous (Mycobacterium tuberculosis) or heterologous (for example, influenza virus) infections remains limited. Here we show that systemic (intravenous) BCG vaccination provides significant protection against subsequent influenza A virus infection in mice. We further demonstrate that the BCG-mediated cross-protection against influenza A virus is largely due to the enrichment of conventional CD4+ effector CX3CR1hi memory αβ T cells in the circulation and lung parenchyma. Importantly, pulmonary CX3CR1hi T cells limit early viral infection in an antigen-independent manner via potent interferon-γ production, which subsequently enhances long-term antimicrobial activity of alveolar macrophages. These results offer insight into the unknown mechanism by which BCG has persistently displayed broad protection against non-tuberculosis infections via cross-talk between adaptive and innate memory responses.

February, 2024

PMID: 38351001 PMCID: PMC10864359 DOI: 10.1038/s41467-024-45480-z

AUTHORS
A General Computational Design Strategy for Stabilizing Viral Class I Fusion Proteins
Karen J Gonzalez 1, Jiachen Huang 2 3, Miria F Criado 3 4, Avik Banerjee 2 3, Stephen M Tompkins 2 3, Jarrod J Mousa 2 3 5, Eva-Maria Strauch 6 7 8

ABSTRACT
Many pathogenic viruses rely on class I fusion proteins to fuse their viral membrane with the host cell membrane. To drive the fusion process, class I fusion proteins undergo an irreversible conformational change from a metastable prefusion state to an energetically more stable postfusion state. Mounting evidence underscores that antibodies targeting the prefusion conformation are the most potent, making it a compelling vaccine candidate. Here, we establish a computational design protocol that stabilizes the prefusion state while destabilizing the postfusion conformation. With this protocol, we stabilize the fusion proteins of the RSV, hMPV, and SARS-CoV-2 viruses, testing fewer than a handful of designs. The solved structures of these designed proteins from all three viruses evidence the atomic accuracy of our approach. Furthermore, the humoral response of the redesigned RSV F protein compares to that of the recently approved vaccine in a mouse model. While the parallel design of two conformations allows the identification of energetically sub-optimal positions for one conformation, our protocol also reveals diverse molecular strategies for stabilization. Given the clinical significance of viruses using class I fusion proteins, our algorithm can substantially contribute to vaccine development by reducing the time and resources needed to optimize these immunogens.

January, 2024

Sci Immunol. 2023 Dec 8;8(90):eadh0687. doi: 10.1126/sciimmunol.adh0687. Epub 2023 Dec 8. PMID: 38064569

AUTHORS
Cai C, Gao Y, Adamo S, Rivera-Ballesteros O, Hansson L, Österborg A, Bergman P, Sandberg JK, Ljunggren HG, Björkström NK, Strålin K, Llewellyn-Lacey S, Price DA, Qin C, Grifoni A, Weiskopf D, Wherry EJ, Sette A, Aleman S, Buggert M.

ABSTRACT
T cells are critical for immune protection against severe COVID-19, but it has remained unclear whether repeated exposure to SARS-CoV-2 antigens delivered in the context of vaccination fuels T cell exhaustion or reshapes T cell functionality. Here, we sampled convalescent donors with a history of mild or severe COVID-19 before and after SARS-CoV-2 vaccination to profile the functional spectrum of hybrid T cell immunity. Using combined single-cell technologies and high-dimensional flow cytometry, we found that the frequencies and functional capabilities of spike-specific CD4+ and CD8+ T cells in previously infected individuals were enhanced by vaccination, despite concomitant increases in the expression of inhibitory receptors such as PD-1 and TIM3. In contrast, CD4+ and CD8+ T cells targeting non-spike proteins remained functionally static and waned over time, and only minimal effects were observed in healthy vaccinated donors experiencing breakthrough infections with SARS-CoV-2. Moreover, hybrid immunity was characterized by elevated expression of IFN-γ, which was linked with clonotype specificity in the CD8+ T cell lineage. Collectively, these findings identify a molecular hallmark of hybrid immunity and suggest that vaccination after infection is associated with cumulative immunological benefits over time, potentially conferring enhanced protection against subsequent episodes of COVID-19.

The International Society for Vaccines is an organization that engages, supports, and sustains the professional goals of a diverse membership in all areas relevant to vaccines and immunotherapeutics.  The ISV is a global not-for-profit organization that aims to encourage, establish, and promote the development and use of vaccines to prevent and control infectious and non-infectious diseases in animals and humans.
info@isv-online.org  /  ISV Annual Congress